Studies of the Angular Correlation Function of Scattering by Random Rough Surfaces with and without - Geoscience and Remote Sensing, IEEE Transactions on

نویسندگان

  • Guifu Zhang
  • Yasuo Kuga
چکیده

The discrimination of the scattered wave from an object buried in shallow ground from that of the rough surface is a difficult task with present ground penetrating radar (GPR) systems. Recently, a new approach for this classical problem has been proposed and its effectiveness has been verified. This new method is based on the angular correlation function (ACF) of the scattered wave observed at two or more different incident and scattered angle combinations. It has been shown that the angular memory signatures of rough surfaces are substantially different from those of typical man-made targets and by choosing the appropriate incident and scattered angles, the surface scattering can be minimized whereas the scattering from the target is almost unchanged. In this paper, we will present detailed numerical studies of the ACF of the scattered wave from rough surfaces with and without a buried object. To obtain the ACF, the three averaging methods: realization, frequency and angular averaging, are tested numerically. It is shown that a single random rough surface of moderate extent can exhibit memory effect by using frequency averaging. Frequency averaging with a wide bandwidth is also effective for suppressing fluctuation in ACF and is most useful for practical applications. Numerical simulations indicate that even when the ratio of scattered intensities with and without the buried object is close to unity, the corresponding ratio of ACF magnitude can be more than 10 dB. Thus, using the ACF is superior to using the radar cross section (RCS) in the detection of buried objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and applications of backscattered frequency correlation function

In this paper, the application of the radar backscatter frequency correlation for classification and inversion of physical parameters of terrestrial targets is investigated. Traditionally, in radar remote sensing, the backscattering coefficients and the backscatter phase difference statistics of a distributed target are considered for estimating the biophysical parameters of interest. Because o...

متن کامل

A numerical simulation of scattering from one-dimensional inhomogeneous dielectric random surfaces

-In this paper, an efficient numerical solution for the scattering problem of inhomogeueuns dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods'with nonuni...

متن کامل

Quantitative roughness characterization of geological surfaces and implications for radar signature analysis

Stochastic surface models are useful for analyzing in situ roughness profiles and synthetic aperture radar (SAR) images of geological terrain. In this paper, two different surface models are discussed: surfaces with a stationary random roughness (conventional model) and surfaces with a power-law roughness spectrum (fractal model). In the former case, it must be considered that for short profile...

متن کامل

Finite-difference time-domain simulation of scattering from objects in continuous random media

A three-dimensional (3-D) finite-difference time-domain (FDTD) scheme is introduced to model the scattering from objects in continuous random media. FDTD techniques have been previously applied to scattering from random rough surfaces and randomly placed objects in a homogeneous background, but little has been done to simulate continuous random media with embedded objects where volumetric scatt...

متن کامل

A Numerical Simulation of Scattering from One-Dimensional Inhomogeneous Dielectric Random Surfaces - Geoscience and Remote Sensing, IEEE Transactions on

In this paper, an efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonunif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005